
A bachelors thesis on the theory behind C2

frameworks, how the infrastructure around them

is configured securely and the design and

implementation of C2 framework as a proof of

concept.

By Oliver Albertsen

Number of characters: 91.768

Designing
a C2
framework.

 [Bachelor Project]
 [Student: Oliver Albertsen]
 [Class: ITS22v | 7. Semester]
 [Guidance Counselor: Constantin Alexandru Gheorghiasa]
 [Deadline: 14-06-2023]

1

Preface
I would like to thank Banshie Aps for cooperating with me on this thesis, I have learned a lot from their

expertise and knowledge within Red Teaming and C2 frameworks. It has helped to improve my technical and

theoretical abilities within the field.

 [Bachelor Project]
 [Student: Oliver Albertsen]
 [Class: ITS22v | 7. Semester]
 [Guidance Counselor: Constantin Alexandru Gheorghiasa]
 [Deadline: 14-06-2023]

2

Table of Contents:
Preface ... 1

Introduction .. 4

Thesis Statement .. 4

Theory ... 5

What is a C2 framework? .. 5

C2 Communication Categories .. 6

Synchronous .. 6

Asynchronous .. 6

On-Demand ... 7

C2 Profiles .. 7

C2 tiers ... 7

Long-haul ... 7

Short Haul .. 8

C2 channels .. 8

C2 frameworks – What can they achieve? ... 10

C2 matrix – Cobalt Strike, Silver & Brute Ratel .. 10

Cobalt Strike .. 10

Silver .. 10

Brute Ratel ... 11

C2 infrastructure ... 12

Redirectors .. 12

OPSEC .. 14

Encryption .. 15

C2 channels .. 15

Domains ... 15

Categorization ... 15

Domain fronting .. 16

Automation .. 16

The ideal C2 infrastructure .. 17

Designing a C2 framework – PrimusC2 .. 18

Server ... 19

Server Overview and Features .. 20

Functions ... 23

 [Bachelor Project]
 [Student: Oliver Albertsen]
 [Class: ITS22v | 7. Semester]
 [Guidance Counselor: Constantin Alexandru Gheorghiasa]
 [Deadline: 14-06-2023]

3

Reflections – PrimusC2 server ... 39

Implant – Nimplant .. 39

Implant overview and features ... 40

Functionality .. 41

Evasion ... 46

Reflections – Nimplant .. 46

Reflections ... 47

Conclusion ... 47

Bibliography .. 48

Appendix ... 53

 [Bachelor Project]
 [Student: Oliver Albertsen]
 [Class: ITS22v | 7. Semester]
 [Guidance Counselor: Constantin Alexandru Gheorghiasa]
 [Deadline: 14-06-2023]

4

Introduction
The threat landscape within cyber security is constantly changing, the adversaries are developing new TTPs

[28] and tools to get one step ahead of the blue teams around the world. The use of Command-and-Control

frameworks(C2) has been adopted by many adversaries[29], and they are seen in many of the largest cyber-

attacks to date. The use of C2 frameworks has enabled adversaries to be more sophisticated and advanced.

Many frameworks are malleable and enable operators to change TTPs quickly, this can help with evading the

blue team defenses.

For this very reason, it’s important for the red teams emulating these adversaries, to know their way around

these frameworks and how they are configured and setup. This leads into red teams developing their own

C2 and infrastructure, to have a higher level of customization. This will enable them to emulate more

adversaries and TTPs in favor of the client that they are testing.

The development of C2 frameworks and the corresponding infrastructure is complex and consists of

advanced tasks, that have many phases and pitfalls. This paper will aim to describe the theory around C2

frameworks, what they can achieve, the infrastructure around a C2 framework, and how to make it more

secure. Lastly, it will show how to build a proof-of-concept C2 framework from the ground up utilizing the

mentioned theory above.

Thesis Statement
Main question:

How to develop a C2 framework that can be utilized for red team engagements ?

- What is a C2 Framework?

- How to configure and provision secure C2 infrastructure?

- How to develop a C2 server and a corresponding C2 Implant?

Figure 1: Diagram of possible C2 setup

 [Bachelor Project]
 [Student: Oliver Albertsen]
 [Class: ITS22v | 7. Semester]
 [Guidance Counselor: Constantin Alexandru Gheorghiasa]
 [Deadline: 14-06-2023]

5

Theory
This section will introduce the theory behind C2 frameworks, initially what a C2 framework is, it will then

progress with describing some of the more technical details regarding a C2 framework and what a C2

framework can achieve. The section aims to give the reader a base understanding of C2 frameworks before

moving on to more technical sections.

What is a C2 framework?
A Command and Control (C2) framework is a crucial component of red team engagements, allowing for the

control and coordination of activities during simulated attacks, also called an engagement. It serves as a

centralized system that facilitates communication, command execution, and data exchange between the red

team's infrastructure (the C2 server) and the compromised systems (the C2 implants).

In essence, a C2 framework consists of two main components, a server, and an implant. Within the

Information Technology world, this is also known as Client-server Architechture. They serve completely

different roles and have entirely separate requirements for both functionality and the technology behind

them.

The server acts as the command center, it handles all the communication with the implants, relays commands

from the operator to the implant, and data transfer e.g., exfiltration of data or upload of payloads. Lastly, the

server facilitates an interface for an operator to work through, this can either be in a terminal or based on a

web interface.

The implant serves as a lightweight agent. The implants main goal is to receive tasks from the server, execute

them and return the answer to the server. To do this the implant connects back to the server through

different C2 channels, an example could be through HTTPS. Since the implant is installed to compromise a

system, it naturally needs to have evasion capabilities to avoid being detected by security measures on the

host or target environment. Implants also need persistence capabilities to ensure survival if the process of

the implant is terminated or the system gets rebooted.

To summarize, a C2 framework is a tool used by the red team to emulate an adversary in the closest way

possible. It facilitates the execution of commands from a central server to an implant on a compromised host.

The centralized control enables a red team operator to maintain an overview and control of multiple

machines at the same time and enables co-operating through the available interface. Lastly, the C2 is just a

means of maintaining “control” of a target environment, through different channels, where an operator can

run commands and tools to achieve the goal of the engagement. For a simple overview and visualization of

a C2 framework, see figure two.

 [Bachelor Project]
 [Student: Oliver Albertsen]
 [Class: ITS22v | 7. Semester]
 [Guidance Counselor: Constantin Alexandru Gheorghiasa]
 [Deadline: 14-06-2023]

6

C2 Communication Categories
There are three different communication categories within C2’s, they are all different in how they handle

data, and they each have advantages and shortcomings. The three categories will be discussed in more detail

below.

Synchronous
Real-time operations characterize the synchronous[31] C2 model, which facilitates a constant

communication stream within the C2 channel. This means that data is flowing constantly between the server

and the implant. The advantage of using this model is that the operator has real-time access to the

compromised system and can interact with the system without any delays. However, the shortcoming of this

model is that the constant flow of data makes it hard to hide the presence of the implant. The constant flow

of data is a big Indicator of compromise(IoC) for the blue team, and the risk of being detected is increased.

Asynchronous
The asynchronous model[31] offers several advantages over the synchronous model. It allows the red team

to have complete control over the frequency of the implant's callbacks. The implant can initiate polling[68]

to the server with a frequency that resembles near real-time or as infrequently as once a day, a month, or

even a couple of months. This behavior of the implant aids in evading detection by firewall and network

security solutions. Since the data flow generated by the implant is less predictable and conspicuous on the

network, compared to the synchronous model, it becomes more challenging for security systems to identify

and block malicious traffic. Additionally, the implant doesn't require an established connection to the server,

this feature reduces the risk of sudden termination due to network timeouts, failures, or similar network-

Figure 2: Simple C2 overview diagram

 [Bachelor Project]
 [Student: Oliver Albertsen]
 [Class: ITS22v | 7. Semester]
 [Guidance Counselor: Constantin Alexandru Gheorghiasa]
 [Deadline: 14-06-2023]

7

related issues. As a result, the implant remains resilient and continues its malicious activities without

interruption.

On-Demand
The on-demand model[31] is slightly different and unique compared to other models. Unlike other models,

it functions selectively, activating communication on the network solely when necessary. In this model, the

implant remains dormant until an operator initiates a specific task or command. Popular C2 channels

associated with this model include emails, web shells, or services that don't require continuous connection

callbacks to the server.

C2 Profiles
A C2 profile is a configuration file utilized in some C2 frameworks[35], it enables the operator to add some

customization to the implant before compile time and change the way it behaves. This includes data transfer,

user agent, sleep time, jitter, which protocol to use, and much more. This feature essentially gives the

operator an opportunity to apply randomness and change the signature of the implant. This can help with

evading initial scanning by anti-virus products and later in the chain while performing other activities such as

post-exploitation or data exfiltration.

C2 tiers
There are two tiers of C2 servers within red team engagements. They serve different purposes, but for a

successful red team engagement, both types are needed as they support each other with their different

functionality.

Long-haul
Long-haul servers[33] serve as C2 servers that manage callbacks from compromised systems once

persistence has been established and are not used for operation on the target. Their primary role is to provide

the red team with continued access to the target environment in case the initial connection is lost. These

servers are responsible for maintaining long-term access to the compromised host or network. The utilization

of long-haul servers necessitates a high level of discipline to operate, because of their “fragile” nature. Long-

haul servers are considered essential components of red team C2 infrastructure, if a server is detected by

the blue team, it could very well be the end of the engagement because this is the lifeline into the

environment.

Some of the most important aspects when running a long-haul server is:

- Never run an active session through a long-haul server, it creates unnecessary traffic and artifacts on

the compromised host/network, and it will increase the risk of the long-haul server getting

detected(burned).

- High callback times are essential for the long-haul server usually these are set to callback around

each 12-24 hours, they are meant to be long-term access and not convenient quick access to the

target.

- The callbacks have randomization(jitter) of the precise time the implant is set to perform a callback,

this can be around 5-30 mins in variation, this is done to prevent the blue team from seeing any

patterns that could look like anomalies.

 [Bachelor Project]
 [Student: Oliver Albertsen]
 [Class: ITS22v | 7. Semester]
 [Guidance Counselor: Constantin Alexandru Gheorghiasa]
 [Deadline: 14-06-2023]

8

- To ensure operational security, it is crucial to utilize a distinct C2 profile for the long-haul server. This

involves generating a unique profile that sets the long-haul server apart from the short-haul servers.

The purpose of this distinction is to prevent any actions performed by the short-haul servers during

post-exploitation from inadvertently leading the blue team to discover the long-haul server. By

analyzing telemetry from the short-haul servers, the blue team could potentially identify the long-

haul server due to similarities in their profiles. Thus, employing a unique C2 profile for the long-haul

server is essential to maintain the covert nature of its operations.

- It’s best practice to deploy at least two long-haul servers in a red team engagement, this gives the

read team the option of deploying different C2 channels, an example could be, a HTTPS beacon on

the first server and a DNS beacon on the second server. This gives the red teams multiple ways of

maintaining access to the target environment if the other C2 channel is burned and the blue team

thinks that they have cleared out the malicious actors.

Short Haul
Short-haul servers [34] are used for all the primary operating and interactions with the compromised

host/network. Since this server is the one used for the primary operation, it’s also the one generating the

most artifacts and noise on the network. Short-haul servers are designed to facilitate post-exploitation

activities, such as executing commands, collecting data, or performing specific tasks on compromised

systems. They enable the red team or threat actors to maintain control and interact with the compromised

environment for a shorter duration, often in a more active and dynamic manner. This behavior can often

result in the server being burned and a new instance needs to be deployed.

Some of the most important aspects when running a short-haul server is:

- The ability to quickly and with little effort deploy new instances to replace burned servers through

the long-haul servers, this step is important to ensure the effectiveness and uptime for the operators

working on the engagement.

- Running the server with different callback intervals(jitter), ranging from near real-time and 40-60

seconds in between callbacks. However, the callback time needs to be adjusted according to the

clients environment and the engagement scope.

- As with the long-haul servers, it’s best practice to deploy several short-haul servers that utilize

different C2 channels, to circumvent the defenses of the blue team.

C2 channels
There are multiple methods that an implant can establish a connection and communicate with a C2 server.

These communication methods are commonly referred to as "C2 channels." While any channel can be utilized

for communication, it is highly recommended to employ channels that seamlessly blend into the target

environment. Having knowledge of the software, security features, and other relevant factors of the target

becomes valuable for the red team. They can strategically select C2 channels based on what suits the current

engagement, ensuring optimal conditions for bypassing the security measures such as proxies, firewalls, IDS,

IPS, and more.

Some of the most popular C2 channels[32] are listed below, with their relevant descriptions:

 [Bachelor Project]
 [Student: Oliver Albertsen]
 [Class: ITS22v | 7. Semester]
 [Guidance Counselor: Constantin Alexandru Gheorghiasa]
 [Deadline: 14-06-2023]

9

- HTTP(S) is communication over a common web protocol. They utilize the common web ports 80 and

443, which are allowed to egress from the firewall in almost any enterprise environment. This

channel blends well into the other web traffic on the network and that is why it’s highly used as a C2

channel. If HTTPS is used, it adds a layer of encryption to the traffic preventing the blue team from

seeing the data being transmitted in clear text, and helps the red team in hiding their true intent.

- DNS is a highly popular choice as a C2 channel due to its utilization of the internet's DNS

infrastructure, allowing it to establish communication without direct contact with the C2 server. By

leveraging the widespread use and importance of DNS within the internet ecosystem, this protocol

can successfully bypass most firewall configurations. However, it is important to note that if the DNS

traffic is closely monitored by a Security Operations Center (SOC), it may be flagged as an anomaly.

The volume of data transmitted through DNS might stand out from the normal DNS traffic typically

observed leaving the network, potentially drawing unwanted attention.

- SMB is frequently used on the internal networks, for pivoting to other hosts and to perform lateral

movement inside the target environment. SMB utilize named pipes to communicate, the advantage

of using SMB/named pipes is that it’s a native protocol within the environment, and that provides an

extra layer of evasion for the red team.

- TCP is a basic protocol but is still well-represented within the majority of the C2 frameworks available

at the moment[32]. It provides easy setup via sockets and is reliable by nature. This gives the implant

a steady connection to the server. The shortcoming of using the TCP C2 channel is that by default it

does not come with any encryption, so it’s needed to implement that on top of the channel to provide

safe transmission of data.

- SSH/VPN/any desk etc. is a wide variety of channels, also known as external channels, that have

seen an increase in use over the past couple of years, they provide C2 channels with a strong base

and native implementation. However, their use case is dependent on what equipment is running

within the target environment and how they have set up their network, and what software they

allow. This means that these channels are often used when the red team had prior knowledge of the

target environment before the engagement or have found any information during the initial recon

and OSINT gathering. When used, the channels can be undetected for large amounts of time due to

them being legitimate pieces of software that are allowed within the environment.

- C3[36] is not a channel in itself, but a complete framework by MWR to develop and deploy external

C2 channels. The framework can connect directly to your own command and control framework, it’s

merely an extension. The unique aspect of C3 is that it has built-in channels for well-known services

such as Slack, GitHub, Discord, Google Drive, and many more[37]. This opens an entirely new way for

the red team to operate, by using these very covert channels, it’s possible to evade most of the

firewall rules, and other security solutions present in the network. The applications and services are

seen as native and legitimate since they already are present within the target environment. In recent

years there has been an increase in threat actors using these “legitimate” applications as C2 channels,

the companies aren’t aware of the need to monitor the traffic coming from these applications,

because they are being used by employees in the company as internal tools.

 [Bachelor Project]
 [Student: Oliver Albertsen]
 [Class: ITS22v | 7. Semester]
 [Guidance Counselor: Constantin Alexandru Gheorghiasa]
 [Deadline: 14-06-2023]

10

C2 frameworks – What can they achieve?
Within the world of C2 frameworks, a wide variety of frameworks exist. These frameworks serve the purpose

of centralizing control over various aspects of a network or system. While they all share the common goal of

establishing centralized control, each C2 framework takes a different approach and possesses unique

capabilities.

This section aims to explain what C2 frameworks can achieve and how they do it. It will focus on some of the

popular frameworks that are relevant at the moment, and how they operate.

C2 matrix – Cobalt Strike, Silver & Brute Ratel
With the vast amount of C2 frameworks available, the focus of this section is on a few of the most relevant

frameworks. To get an overview of the most relevant and popular frameworks, the site C2 matrix[32] has

been used, which has a collection of all the frameworks, their channels, implant types, and a broad selection

of other information regarding the frameworks.

Cobalt Strike
Cobalt strike [39] is a proprietary well-known Adversary Simulations and Red Team Operations tool (C2) and

have been the de facto standard framework for red teams and threat actors for the last couple of years[40].

But why is this the case? Cobalt Strike offers a wide range of features in their product, it supports,

Reconnaissance, Post Exploitation, Covert Communication, Attack Packages, Spear phishing, Browser

Pivoting, Collaboration, Reporting and Logging, Interoperability, and Flexibility with their community kit. This

suite of features along with the cobalt strike beacon is very appealing to the threat actors. By utilizing the

cracked versions of the software, they have been able to conduct many malicious campaigns against many

companies around the world. Cobalt Strike is known for supporting different malleable C2 profiles, this has

given the threat actors the ability to create and customize C2 profiles to remain undetected until it’s too late

for the company. The most popular C2 channels being utilized by cobalt strike are DNS and HTTPS for the

external connection and SMB for internal pivoting. The features of the C2 combined with the unique skillset

of some of the more advanced threat actors have been the cause of many of the major incidents in the last

couple of years.

An example of what the C2 can do is the successful attack on the 49ers American football team[42], the group

BlackByte utilized Cobalt strike for the initial access, persistence, and lateral movement until they deployed

their ransomware and stole sensitive financial documents and statements. This is one of many attacks where

Cobalt strike has been deployed and used successfully by threat actors to achieve their goal of financial

payout.

Silver
Silver[30] is an open-source adversary emulation and red team framework, gaining popularity and witnessing

increased adoption by threat actors in the past couple of years[45]. The surge in usage can be attributed to

several factors. Firstly, being an open-source tool, Silver presents itself as a viable alternative to Cobalt Strike,

primarily due to the minimal barriers to access. Unlike Cobalt Strike, which requires cracked licenses and

software to utilize the tool, Silver offers a more accessible entry point.

Furthermore, Silver provides an extensive suite of features. One notable feature is the modularity of the

framework using "Armory," which allows attackers to load modules from Silver's collection into the server

 [Bachelor Project]
 [Student: Oliver Albertsen]
 [Class: ITS22v | 7. Semester]
 [Guidance Counselor: Constantin Alexandru Gheorghiasa]
 [Deadline: 14-06-2023]

11

and execute them. This level of customization empowers operators with the flexibility and capability to

emulate and execute a wide range of attacks. Additionally, Silver supports cross-compilation, enabling the

use of a single framework throughout an engagement, regardless of the target operating system.

In addition to these features, Silver has the core functionalities expected from a modern C2 framework[44].

These include secure C2 channels such as mTLS, HTTPS, and DNS, in-memory .NET execution of assemblies,

and process migration etc. These capabilities enhance the framework's versatility and ensure it meets the

demands of modern C2 frameworks.

Notably, state-sponsored groups have also been observed utilizing Silver in recent years, particularly in

conducting large-scale attacks against Western targets. For example, the threat actor TA551/Shathak[65] is

suspected to have employed the Silver C2 framework in a campaign aimed at achieving persistence on

targeted systems for subsequent exploitation[66].

Overall, the increasing adoption of Silver can be attributed to its open-source nature, ease of access, and a

wide range of features and functionalities. Its usage by state-sponsored groups further solidifies its credibility

and underscores its effectiveness as a C2 framework in conducting sophisticated red team engagements.

Brute Ratel

The Brute Ratel (BRc4)[45] framework has gained attention among red teams and threat actors as a

proprietary customized Command and Control Center for Red Team and Adversary Simulation. Its uniqueness

and appeal stem from several factors. When first released to the market, BRc4 initially provided effective

evasion capabilities since it hadn't been used extensively in enterprise environments[46]. This aspect made

it particularly attractive to red teams and threat actors seeking to operate stealthily. However, with the

growing user base and threat actors adopting the framework, this capability has diminished slightly.

Moreover, BRc4 distinguishes itself by offering unique C2 channels within its stock release. For instance, it

incorporates DNS over HTTPS (DoH), enabling red teams to utilize newly purchased domains without the

need for a redirector. Additionally, the framework includes built-in functionality that facilitates seamless hot-

switching to other HTTPS profiles on the fly. Furthermore, BRc4 allows for the utilization of external C2

channels such as Slack and Microsoft Teams. These features expand the options available for communication

and control during operations.

In terms of evasion, the stock version of BRc4 is equipped with various built-in features. These include indirect

syscalls and a built-in debugger, which effectively evades EDR userland hooks. These evasion mechanisms

enhance the framework's ability to operate undetected within targeted environments.

Interestingly, the usage of BRc4 has extended beyond individual threat actors, with even nation-state actors

incorporating it into their operations. Notably, a case investigated by Palo Alto Unit 42 involved the discovery

of a sample on Virustotal[47]. The sample comprised an ISO file containing a “.lnk” file, which, in turn, housed

a malicious DLL file alongside a legitimate copy of the OneDrive updater. The investigation results and

indicators of compromise (IOCs) pointed to the involvement of APT29, a Russian nation-state actor.

Overall, the appeal and adoption of BRc4 stem from its evasion capabilities, unique C2 channels, and the

recognition it has gained among threat actors, including nation-state actors. Its usage demonstrates its

efficiency and relevance within the landscape of Red Team and Adversary Simulation activities.

 [Bachelor Project]
 [Student: Oliver Albertsen]
 [Class: ITS22v | 7. Semester]
 [Guidance Counselor: Constantin Alexandru Gheorghiasa]
 [Deadline: 14-06-2023]

12

The three mentioned frameworks are by no means an exhaustive list of the relevant frameworks present in

today’s scene of C2 frameworks. They are merely some of the most popular. The frameworks prove that they

have the capabilities to achieve very sophisticated goals and can perform highly technical attacks and the

most modern infrastructure that is available to this day. This is just an indication that this is the age of C2

frameworks, their capabilities will keep expanding and additional functionality and advanced techniques are

being developed and implemented to stay ahead of the blue team defenses.

C2 infrastructure
The C2 infrastructure is the cornerstone of a successful C2 framework and red team engagement. Without a

solid infrastructure, a highly advanced C2 framework will fall short in terms of conducting a successful red

team engagement. A covert and solid C2 infrastructure comprises of various interconnected elements that

collectively contribute to its effectiveness, this section will focus on the components of the infrastructure and

outline the ideal setup of C2 infrastructure.

Redirectors
Redirectors are one of the most important aspects within C2 infrastructure. Redirectors provide the initial

and required obscurity of the C2 team server.

A redirector functions as a proxy for the team server, the goal is to have one placed in front of every asset in

the backend to introduce obscurity and resilience. A basic redirector works in the following way. Implants

will call back to the redirectors domain/address, and all the relevant traffic arriving will be redirected to the

team server. In Figure three below a setup in its simplest form with one redirector in front of the team server

is displayed.

Figure 3: A basic C2 setup with one redirector

 [Bachelor Project]
 [Student: Oliver Albertsen]
 [Class: ITS22v | 7. Semester]
 [Guidance Counselor: Constantin Alexandru Gheorghiasa]
 [Deadline: 14-06-2023]

13

Multiple types of C2 redirectors exist and they have different strengths and weaknesses. The first redirector

type is dump pipe redirection[48], this means that the redirector will forward any traffic that is directed at a

specific listener port, to the team server behind the redirector. There is no inspection of the traffic,

determining if this is a valid callback from the implant or if it’s the blue team probing the redirector to find

the obscured C2 server. A setup like the one mentioned above can be achieved using tools like Socat[49]and

IPtables which have the capability to forward traffic from one port to another.

This setup is the simplest and easiest for a redirector and will provide simple obscurity for the C2 server. A

visual representation can be seen in Figure four below.

Figure 4: Dumb Pipe Redirection with Socat

The next type is smart pipe redirection[48], this type will not blindly forward traffic to the C2 server. The

traffic will be inspected upon arrival to the redirector, from this point it will determine if the C2 traffic is valid,

and then forward the traffic to the C2 server, if the traffic is invalid, the redirector will either show a fake

webpage or it will redirect the traffic to another legitimate site on the internet. This gives a better level of

obscurity and enhances the operational security of the infrastructure. When the blue team is fingerprinting

and identifying If the current traffic pattern, is leading to an active C2 infrastructure. The mentioned setup,

if configured correctly, will hinder the blue team in identifying and exposing the infrastructure and C2 server.

In figure five a visual representation can be observed.

Figure 5: Smart Pipe Redirection with Caddy

Depending on which type of C2 channel that is used in the infrastructure, the method of validation can differ

from type to type. One of the most popular methods when using the HTTP channel to validate is by using the

`user agent` header in the HTTP request. If the correct header isn’t received, the request will be redirected

 [Bachelor Project]
 [Student: Oliver Albertsen]
 [Class: ITS22v | 7. Semester]
 [Guidance Counselor: Constantin Alexandru Gheorghiasa]
 [Deadline: 14-06-2023]

14

to the fake site. Another example of validation can be the use of JSON Web Token(JWT). The redirector would

only accept requests that have a valid and signed JWT in the authorization header, if the token is not valid it

would redirect or return a 404-error page. This would require the server to generate a symmetric key that

can be used for encryption and decryption of the JWT. The mentioned validation methods are by no means

an exhaustive list of methods but are just relevant examples.

There are multiple options when choosing what kind of system, the redirector should be provisioned on. The

first option is a small server or VPS in the cloud. These instances can be provisioned and torn down quickly,

this means they are easily automated which is essential for a resilient and efficient C2 infrastructure. When

utilizing these VPS/servers several different solutions for handling the redirection exist, some of the popular

options for smart pipe redirection are, Apache2[50], Nginx[51], and lastly Caddy[52]. All options function as

reverse proxies and can be configured to use different validation methods.

The second option is using a serverless approach and using functions from cloud providers such as AWS[53],

Microsoft Azure[54], and Cloudflare workers[55]. Essentially, it’s just “server-less computing”, this means

that you can provide some code to the platform of choice, and it will be executed upon a trigger, that is

validated, this could be an SMS, HTTP post request, or anything else that is defined. The cloud provider will

then take care of all the computing and resources needed for the code to run. This takes the configuration

of servers away from the operators giving them more time to focus on the more important aspects of the

infrastructure. In Figure six a visual representation of an AWS lambda redirector can be seen.

Figure 6: AWS Lambda Redirector

All the above are viable solutions in terms of what system and validation type that is chosen. It all depends

on what type of engagement that's presented and how the clients environment is configured. However, it’s

recommended to employ the smart redirector in most cases, because it will offer improved operational

security and give the operator more flexibility in terms of customizing how the redirector behaves.

OPSEC
OPSEC, or Operational Security is one of the most important aspects within a red team engagement and is a

big part of the infrastructure as well. OPSEC is a process that aims to identify critical information within an

engagement, followed by the implementation of measures to ensure its protection and prevent unauthorized

disclosure. The goal is to prevent sensitive data from falling into the hands of individuals or entities who could

exploit it for malicious purposes.

 [Bachelor Project]
 [Student: Oliver Albertsen]
 [Class: ITS22v | 7. Semester]
 [Guidance Counselor: Constantin Alexandru Gheorghiasa]
 [Deadline: 14-06-2023]

15

Encryption
One of the most important aspects of OPSEC is encryption. It’s crucial for a successful red team operation

that all traffic between the C2 infrastructure, and the clients environment is encrypted. Firstly, this is a

necessity for the red team in terms of remaining undetected and keeping their actions covert from the blue

team. Every time the red team performs an action in the environment, they essentially leave an artifact

behind, the goal is to prevent the blue team from correlating these artifacts and exposing the read team

Encryption of the traffic will help to obscure which actions that have taken place and what data that has been

exfiltrated.

Another important aspect is how the data from the engagement is handled at rest. The red team will

inevitably exfiltrate some data, from the target, this can be databases, passwords intellectual property, and

so on. This data needs to be handled correctly and responsibly. The red team has an obligation to the client

in terms of making sure that all data at rest is properly stored and encrypted.

C2 channels
The selection and configuration of C2 channels play a crucial role in establishing a robust C2 infrastructure.

These channels determine the methods and protocols through which data is transmitted and received during

the engagement. The choice of channels depends on the specific environment in which the engagement takes

place, necessitating different channels and potentially varying numbers of channels. It is essential to carefully

consider and optimize the C2 channels to ensure effective communication and data exchange throughout

the engagement.

To have a resilient C2 infrastructure, it needs to be ready to transform on short notice. An example could be

that the blue teams detect one of the C2 channels, this could be an HTTP channel. If this channel is blocked

the infrastructure needs to be ready to tear this resource down, and then provision a new resource that can

handle a DNS channel. It all comes down to readiness and being able to adapt to the circumstances in the

current engagement.

Domains
Domains are essential for the C2 infrastructure, these are used as callback points, this means that the implant

seeks to reach out to the domains owned by the red team. It’s important, as the red team to have a wide

variety of domains at their disposal. This is needed to enhance the readiness capability and to have the

capacity for different types of engagements.

Categorization
Domain categorization[34] involves the assignment of one or multiple categories to a specific domain, based

on its content. The reason behind the red team using categorization is that it can increase the reputation of

the domain substantially. This is why that’s it’s highly recommended to use categorization on all red team

associated domains.

There are two options for the red team in terms of acquiring a categorized domain. The first one is two buy

a pre-categorized domain, this will give the red team a domain that already has established a good reputation

and does not need any extra work. The second option is to buy a non-categorized domain and start the

categorization process from scratch. This can be done by submitting the domain to multiple categorization

engines or by redirecting traffic from the domain to a fake site within a specific category.

 [Bachelor Project]
 [Student: Oliver Albertsen]
 [Class: ITS22v | 7. Semester]
 [Guidance Counselor: Constantin Alexandru Gheorghiasa]
 [Deadline: 14-06-2023]

16

When deciding on the domain for the engagement, it is vital to consider the specific requirements of the

engagement itself. One of the key factors to consider is the purpose of the designated domain and to what

extent it should blend into the target environment, as well as whether it is necessary to replicate any domains

within the target, to bypass any of the security solutions in place.

Domain fronting
Domain fronting is a strategy utilized by red teams to conceal their C2 infrastructure behind a Content

Delivery Network (CDN), leveraging the legitimacy of the CDN to mask their activities. This technique involves

obscuring the red team's domain by utilizing the legitimate domain of the CDN, effectively concealing the

traffic directed towards the C2 infrastructure.

Domain fronting explained in technical terms, works by utilizing a legitimate domain name in the SNI

extension field of the TLS header, which is different from the one specified in the HTTPS Host header field.

When a browser or any TLS client sends a request to a domain, the initial step is establishing a connection.

The TLS negotiation will utilize the hostname used for initiating the connection. When the TLS connection is

established the HTTP(s) request will be transmitted containing the malicious site in its host header field. It’s

to be noted, that for domain fronting to work, the legitimate site and the malicious site need to be in the

same CDN.

Domain fronting is a viable option to strengthen the security posture and OPSEC of the infrastructure.

However, some of the larger companies have started to implement mitigations against domain fronting by

implementing proxies on the edge of the network that has TLS inspection enabled, this can defeat domain

fronting but does not make it impossible.

Automation
Automation is crucial for an efficient C2 infrastructure. The need for quick provisioning and destruction of

resources is essential for the red teams ability to adapt to the changing circumstances in the engagement.

Automation is needed in all stages of an engagement. The initial setup of the entire infrastructure should be

accessible, and easily customized to the specific engagement. The operator needs the options for how many

team servers, redirectors, short-haul (SH), and long-haul (LH) servers that should be provisioned and have

different methods to provision these. When the infrastructure has been provisioned and has been actively

used on the engagement, there is a chance that the blue team has discovered one of the SH server redirectors

and has blocked all outgoing traffic to that server. This means that the server has been burned and the

operators need to provision a new one. When automation is in place for situations like the one mentioned

above, it significantly improves the ability to provision a new server and redirector that replaces the burned

part of the setup. Without allocating an extra time slot for an operator to configure and provision it again.

A lot of different frameworks and tools enables a red team to automate the infrastructure. For the

provisioning of cloud assets, Hashicorps Infrastructure as code (IaC) tool Terraform[23] is one of the leading

actors on the market. They offer support and documentation for many different cloud providers, and they

have a low barrier of entry in terms of the technical abilities needed to get started. Terraform has the ability

to perform small configurations on the hosts that are provisioned, but when dealing with larger

configurations, other tools like Ansible are used.

 [Bachelor Project]
 [Student: Oliver Albertsen]
 [Class: ITS22v | 7. Semester]
 [Guidance Counselor: Constantin Alexandru Gheorghiasa]
 [Deadline: 14-06-2023]

17

Ansible[57] is used to configure the assets that have been configured with Terraform. Ansible runs using what

they call playbooks. This is a configuration file, which contains all the information about, how the system is

configured, this could be open ports, installation of tools, running scripts etc. The playbook format gives the

operators the ability to create playbooks for different scenarios, this improves their readiness ability. An

example could be that a redirector was discovered, and traffic was blocked to that address, in response to

the actions from the blue team, the operator can deploy a redirector playbook and provision a new redirector

with different properties.

Essentially automation is a skill that operators need to possess to make the engagements more fluent and

make them able to adapt to the situations that arise dynamically.

The ideal C2 infrastructure
To combine all the knowledge projected so far, this section will aim to outline the ideal C2 infrastructure and

what components that it consists of. Below in Figure seven is a visualized example of how the ideal

infrastructure could look like. Keep in mind that the diagram is not the only viable configuration, but just an

example.

Figure 7: Example of ideal infrastructure

The infrastructure in question builds upon the topics discussed earlier in this section. Firstly, as seen in Figure

seven the infrastructure has four C2 servers, two of each type. The choice of two LH and two SH servers are

to give the infrastructure some resilience towards failures on servers or possible detection from the blue

team, the operators need to have backup solutions in place to maintain access to the environment both short

 [Bachelor Project]
 [Student: Oliver Albertsen]
 [Class: ITS22v | 7. Semester]
 [Guidance Counselor: Constantin Alexandru Gheorghiasa]
 [Deadline: 14-06-2023]

18

and long-term. As mentioned earlier the long-haul servers are purely meant for persistence and not active

sessions, so their callback time is set between 12-24 hours, to increase the chances of staying undetected.

While the short-haul is meant for the active sessions and execution of tasks, they have a more frequent

callback time. Short-haul servers are easily spun up and very easy to configure with Terraform and Ansible

playbooks.

Moving on to the redirectors, a wide selection of these are implemented to give the operators multiple paths

to route their traffic through. The intention is to utilize multiple channels to blend in within the target

environment, the thesis is that one consistent data stream to a single redirector, will over time look more

suspicious than spreading out the traffic to multiple different redirectors, that have different domains, with

different categorizations. It’s all about preventing the blue team from connecting the “dots” left behind.

As with the redirectors, different C2 channels are used in conjunction with each other to spread out how the

data between the infrastructure and target environment are transferred. An example would be, DNS, HTTPS,

Encrypted TCP, and an external channel like Slack etc. This gives the operators the freedom to use different

channels depending on what situation they are currently facing, this could be to evade network security

solutions, such as firewalls, proxies, IDS etc., or security solutions on the host.

The C2 infrastructure is the backbone for the entire red team engagement, from the previous section it’s

evident that it has the capabilities to withstand many scenarios. From the blue team probing servers and

redirectors to hardware and software failures in the infrastructure. It needs to be resilient enough to continue

operations. The main takeaway for success is that the infrastructure needs to be done right from the start,

automation and planning is key. If these components are implemented well, the basis for a strong resilient

infrastructure is in place.

Designing a C2 framework – PrimusC2
The design of a fully-fledged C2 framework for a red team engagement is a complex and time-consuming

objective. It can take years of development to get a framework ready for production and meet OPSEC

standards. The following C2 framework built for this thesis is a proof-of-concept framework and is meant to

be expanded upon in the years to come. In its current state, It wouldn’t be ready to deploy in a production

environment and is lacking features, that is expected of a modern C2. This section will go through the design

process and highlight how the different components were built and the reflections regarding the decisions

made during the development phase.

A complete overview of the C2 framework in its completed state is visualized below in Figure eight.

 [Bachelor Project]
 [Student: Oliver Albertsen]
 [Class: ITS22v | 7. Semester]
 [Guidance Counselor: Constantin Alexandru Gheorghiasa]
 [Deadline: 14-06-2023]

19

Figure 8: Complete overview of PrimusC2

The framework has multiple capabilities and features. The server supports operation on both local

environments and remote environments using a redirector. Furthermore, it has multi-session capabilities, a

payload server, implant generation, a PowerShell download cradle, and more. The implant is compiled for

Windows and support, bypassing windows defender, execution of PowerShell via CLR in unmanaged

runspace, bypass of AMSI and more.

The features and explanations of each component will be discussed in further detail in the coming sections,

for a full overview, the source code can be seen in the attached appendix or the GitHub repository:

https://github.com/Primusinterp/PrimusC2.

Server
The server is the heart of the C2 framework and is the place where everything is controlled from. It needs

to have the capabilities for many different tasks that it must perform simultaneously.

For the server, I had the following requirements:

- Basic session handling

- Threaded server

- Creation of a listener

- Handle incoming and outgoing

connections.

- Creation of implants/patching variables

https://github.com/Primusinterp/PrimusC2

 [Bachelor Project]
 [Student: Oliver Albertsen]
 [Class: ITS22v | 7. Semester]
 [Guidance Counselor: Constantin Alexandru Gheorghiasa]
 [Deadline: 14-06-2023]

20

- Capability to execute commands on a

remote target.

Server Overview and Features
As mentioned earlier the server is written in python3[1], the reasoning behind this, is that Python is a

language that includes a lot of modularity, and this enables me as the developer to quickly and efficiently

develop functionality that meets the requirements for the server. Furthermore, the large community of

Python developers produces a lot of modules which can be imported into the project, this allows me to

implement more features. This feature also comes with a security concern as these modules are community-

driven, malicious actors could have an interest in exploiting these modules and plant backdoors in them. I

have taken my due diligence and researched these modules for the safety of the project and taken OPSEC

into account.

The server utilizes the synchronous C2 model. TCP sockets are used for communication between the server

and the implant. To handle multiple callbacks from implants I’ve implemented threading. This means that

the main logic runs in the main thread, every time a new callback(socket connection) is received a sub-thread

is spawned to handle all actions with that implant, if another implant makes a callback another sub-thread

will be spawned and so on. The need for threading arises because the server needs to be performing multiple

tasks at the same time, and a single thread can only perform one task at a time.

Figure 9: Session table

The server also supports dynamic generation of implants. This means that the operator can input the desired

address and port for the implant to call back on and it will automatically fill in these values to the implant

template and it will then be compiled with the appropriate values. Below in Figure ten, eleven, and twelve,

the path to auto-generating the implant with custom values can be seen.

 [Bachelor Project]
 [Student: Oliver Albertsen]
 [Class: ITS22v | 7. Semester]
 [Guidance Counselor: Constantin Alexandru Gheorghiasa]
 [Deadline: 14-06-2023]

21

Figure 10: Help menu highlighting the implant option.

Figure 11: generation of a listener on localhost.

Figure 12: The generation of an implant.

The server also supports spinning up a secondary web server(see Figure eleven) which can host payloads that

the PowerShell Download cradle can fetch and execute. A payload directory is created when running the

server for the first time. However, the server is currently running in the same directory as the entire code

base, this means that if exposed to the internet, it would be possible to view and download all the files related

to the project, for this reason, the payload server is not exposed to the internet when using a redirector to a

remote environment. This is purely for OPSEC reasons, as of now the secure feature of the web server hasn’t

been implemented due to time constraints for the thesis.

 [Bachelor Project]
 [Student: Oliver Albertsen]
 [Class: ITS22v | 7. Semester]
 [Guidance Counselor: Constantin Alexandru Gheorghiasa]
 [Deadline: 14-06-2023]

22

As mentioned above the server also supports a PowerShell download cradle, essentially this is just a

download and execute feature. It’s designed to download and execute in two stages; this behavior is added

to introduce some confusion for any AV products on the machine and improve the chances of the cradle

executing its payload successfully in memory using IEX[58] from PowerShell. The download works by creating

a “runner file” which contains the command for fetching and executing the binary from the payload server,

the second stage is utilizing IEX to fetch and execute the runner file. With this process, the intended payload

will not touch the disk. Below in Figure thirteen, an example of a PowerShell cradle can be seen.

Figure 13: pwsh_cradle example

One of the most essential components of the server is the capability of automated redirector setup. Upon

choosing what type of listener the operator wishes to generate, the option of a redirector listener is available.

The setup can be seen in Figure fourteen and fifteen.

Figure 14:Redirector listener setup

Figure 15: The completion of the redirector setup on Digital Ocean

 [Bachelor Project]
 [Student: Oliver Albertsen]
 [Class: ITS22v | 7. Semester]
 [Guidance Counselor: Constantin Alexandru Gheorghiasa]
 [Deadline: 14-06-2023]

23

The automated setup will then proceed to provision a VPS with the hosting provider Digital Ocean[59] using

Terraform. The redirector is a dumb pipe redirector and is configured to use SOCAT which relays the traffic

back to the server. The redirector setup makes use of the same logic as with the implant generation in regards

to patching of variables in the terraform template, this allows the operator to change the values within the

template dynamically when provisioning and configuring the redirector.

The implementation is a great first step to mask the server from the outside world, however by not using a

smart redirector, the C2 server could be vulnerable to probing from the blue team if the listener port is

discovered. As the developer, I am aware of the apparent OPSEC issue in this matter and know the

importance of Implementing proper redirection that validates the traffic. In the “comm_handler()” function

some logic has been introduced; this means that the implant must send a specific sequence of data before

the server will create an active callback session in the C2 interface.

Functions
The following section covers the functions that run the server, a list of functions will be displayed and some

of the functions will be discussed more in depth and detail. The server itself has been written in Python as

this is a very well-documented and flexible language, which made a lot of sense to use for a project like this.

Other types of languages have been used as well. This includes writing the setup scripts for the server in bash

and writing the redirector setup in the terraform syntax.

Function name: Explanation:

def listener_handler() Function to handle incoming connections and send

bytes over the socket

def help() Showcase commands available in the C2

def comm_in(target_id) Handle incoming data and decode it

def comm_out(target_id, message) Handle outgoing data and encode it

def kill_signal(target_id, message) Function to terminate active implants

def target_comm(target_id, targets, num) Handle interactions with the active callbacks, and

execute commands, eg: help, exit, background.

def comm_handler() The logic for handling callbacks and responsible for

appending important callback data to variables and

session table

def nimplant() Function to compile an advanced Windows implant

in the Nim programming language

def resolve_ip(interface) Function to resolve an IP-Address from an

interface on the local host

def pwsh_cradle() Creates a PowerShell download cradle in two

stages that enables the operator to download an

encoded payload and execute it in memory

def web_payload_server() Creates a simple web server that serves payloads

for the pwsh_cradle function or other downloads

def redirector(LPORT) Function to configure and provision a dumb-pipe-

redirector in a Digital Ocean VPS. This is a listener

option to mask the C2 IP Address.

 [Bachelor Project]
 [Student: Oliver Albertsen]
 [Class: ITS22v | 7. Semester]
 [Guidance Counselor: Constantin Alexandru Gheorghiasa]
 [Deadline: 14-06-2023]

24

def exit_handler() Commands to execute at the exit of the server

Code within: if __name__ == '__main__': Logic to create a TCP socket, directories, ask for

user inputs, sessions table, exception handling, exit

functionality

The functions above make up the server’s logic and they all serve a different, but important purpose. The

following functions will be discussed more in-depth, def target_comm(target_id, targets, num), def

comm_handler(), def nimplant(), def redirector(LPORT), and the code within if __name__ == '__main__'.

if __name__ == '__main__':

The if __name__ == '__main__': line is not a function in itself its used to execute specific code only when the

script is run directly and not when it is imported as a module. It allows the script to have both standalone

functionality and be reusable as a module. It also brings the functionality of executing the code within the `if

statement` first when the script is executed.

The code within the `if statement` is handling the majority of the function calls and logic that essentially is

the backbone of the server. Below in Figure sixteen, seventeen, and eighteen, the full code can be seen.

 [Bachelor Project]
 [Student: Oliver Albertsen]
 [Class: ITS22v | 7. Semester]
 [Guidance Counselor: Constantin Alexandru Gheorghiasa]
 [Deadline: 14-06-2023]

25

Figure 16: First part of "if__name__==__main__"

 [Bachelor Project]
 [Student: Oliver Albertsen]
 [Class: ITS22v | 7. Semester]
 [Guidance Counselor: Constantin Alexandru Gheorghiasa]
 [Deadline: 14-06-2023]

26

Figure 17: The second part of “if__name__==__main__”

 [Bachelor Project]
 [Student: Oliver Albertsen]
 [Class: ITS22v | 7. Semester]
 [Guidance Counselor: Constantin Alexandru Gheorghiasa]
 [Deadline: 14-06-2023]

27

Figure 18: The last part of "__name__==__main__"

The initial part of the code is creating different datatypes(line 350-356), that is needed later in the code. The

first variable declared is the list called ̀ targets`, this list is needed to store all the incoming socket connections

and their details. Moving on, a variable called `listener_counter` is initiated to 0. This variable is used to make

sure there is an active listener configured, before compiling an implant. The next important variable is the

`kill_flag` which is initiated to 0. This is used as a switch to break out of the `comm_handler` function if the

value 1 is assigned to the variable. This is needed to exit the program, because the function will “hang” if the

while loop is not dealt with properly, at exit. Two global variables are declared to make them available in the

entire code base. Lastly, the socket is initiated and assigned to the variable `sock`. This is the backbone of the

server and is behind all the communications incoming and egressing.

From line 358 to 363 a check is made whether the needed directories have been created, if they aren’t

available on the system, the directories will be created. Moving on to line 366 - 479 the logic for the prompt

is written. The prompt contains the commands that the operator has available for use and what actions that

can be performed. The following sections will describe the functionality of these options.

From line 367 to 401 the logic for the help command and creation of listeners is present. The user is presented

with the choice of 3 listeners when inputting the command `listeners -g`(see Figure fourteen). The different

types of listeners give the operator the freedom to choose the solution that fits best for the current setup.

When the listener details have been submitted by the operator, the listener function will be called alongside

the web payload server, furthermore, the `listener count` will be incremated to 1, enabling the `nimplant`

command for generating an implant.

In line 402-408 the command for `nimplant` and `pwsh_cradle` are present. The nimplant command checks

if the `listener count` is larger than 0, if true the nimplant function will be called, if false an error message

will be printed. Moving on to the `pwsh_cradle` when the command is received from the operator the

function will simply be called.

On line 410, the kill command is present. This command will kill an active implant and terminate its session.

The implant is built to exit upon receiving the message “exit”. The kill command will simply make use of a

function that sends the “exit” message to the desired implant resulting in the termination of the session.

 [Bachelor Project]
 [Student: Oliver Albertsen]
 [Class: ITS22v | 7. Semester]
 [Guidance Counselor: Constantin Alexandru Gheorghiasa]
 [Deadline: 14-06-2023]

28

From line 427-461 the logic for accessing and handling the subsequent sessions are in place. This gives the

operator access to interact with sessions and list what active sessions there are available. A session counter

is declared and initiated with 0 to keep track of the active sessions and make sure that all sessions id’s are

unique, and duplicates can’t exist. When the command “sessions -l” is executed by the operator, the code

will make use of a module called prettytable. This will generate a table that contains all the important data

from the implant. The information in the session table is received by the `comm_handler` function and is

appended to the `targets` list. To access the information from the ̀ targets` list, the indexes are accessed with

a for loop and are added as a row to the prettytable(see line 433-435). The sessions command has a sub flag

which is “-i”. This flag is used to interact with a session. The command from the operator is split on whitespace

and then the indexes are used to fetch the ID that the operator has entered in the prompt, and then call the

`target_comm` function which is used when interacting with a session. Before calling the function, a check is

in place to make sure that the session requested has the value “Active” on index seven, this is done to make

sure that the implant isn’t dead. Another command called “use” has the same functionality as the above and

is created using the same logic. It’s made for quick access to interact with a session.

The last part of the code(line 463-491) is handling the command “exit” and a keyboard interrupt. When the

command “exit” is issued by the operator, an if statement will check if the targets (callbacks) are dead, if not

it will call the `comm_out` function and send an exit message, meanwhile, the number 1 will be assigned to

kill flag and the `comm_handler` loop will be broken and the program can exit gracefully. Furthermore, a

check is made if the `listener_count` is greater than 0. If true, the socket will be closed, the final loop will be

broken, and the server will exit.

Lastly, the server will exit upon the exception `Keyboard interrupt` in the same way as above. To mitigate

any accidental keyboard interruptions, the server will ask if the user is insisting on quitting before carrying

out the operations of shutting the server and terminating implants. At the end of the code, the ̀ exit_handler`

function is called, its task is to perform a light clean-up of template files and destroy any redirector

infrastructure if a redirector was used.

Def target_comm(Target_id, targets, num)

As mentioned above, the target_comm function main task is to handle the interactions with the active

callbacks. It facilitates interaction with each individual socket connection that is stored inside a nested list.

Below in Figure nineteen is the code for the function, it will be explained in greater detail in the next section.

 [Bachelor Project]
 [Student: Oliver Albertsen]
 [Class: ITS22v | 7. Semester]
 [Guidance Counselor: Constantin Alexandru Gheorghiasa]
 [Deadline: 14-06-2023]

29

The function is called when the operator requests a session with a given callback. The first part of the

function(line 90-96) is the initial functionality that takes a message as an input, it then moves on to check the

length of the message, to prevent the function from “hanging”. Without the check the function would send

an empty message and the implant would try to execute it, as there is no output, the function would just

wait for an answer until restarted. Lastly, it checks if the input equals “help” and outputs the help menu if

true.

If the two statements above are false, it will jump to the first else statement and call the ̀ comm_out` function

that sends the data inside the variable “message” to the target. Within the else statement, the function

checks what the message equals to, the options are, an exit message which kills the agent and marks it as

“dead”, and a simple background command that breaks the interaction with the session. This will return the

operator to the main prompt.

The next check is the “persist” command, this enables the operator to gain persistence for the current

implant that is running on the system. The command functions by copying the payload to a public writable

folder, next up the server will send a command that will add a new registry key that will execute the implant

when the system is rebooted. This persistence method was chosen to improve the survivability of the implant

in case the workstation/server crashes or a reboot or shutdown was initiated by a user. The registry key is

given a random name, this is because I want to mask it from analysts etc. If the registry key has the same

name as the implant, it could help them connect the dots and shut down the engagement.

Furthermore, a check is made for the “GetAv” command, this will tell the server to pass(do-nothing) as the

logic is handled on the implant side.

Figure 19: Target_comm function

 [Bachelor Project]
 [Student: Oliver Albertsen]
 [Class: ITS22v | 7. Semester]
 [Guidance Counselor: Constantin Alexandru Gheorghiasa]
 [Deadline: 14-06-2023]

30

Lastly, when all the above equals false, the function will call the “comm_in” function which handles incoming

data, and it will check whether the incoming data equals exit and it will subsequently shut down the thread,

break the loop and print the response message.

Def comm_handler()

The comm_handler function's main task is to handle incoming callbacks, the function is checking that the

right information is provided at check-in to be accepted as a valid callback and show up in the sessions table.

Furthermore, the function Is responsible for taking the information from the callback, adding it to a list, and

appending that list to the targets list, which holds all the active callbacks as sub-lists.

In figure twenty the full code for the comm_handler function can be seen.

Figure 20:The full code of the comm_handler function

The function is called as a thread when a listener is created on the server(see Figure twenty-one).

Figure 21: comm_handler function call

 [Bachelor Project]
 [Student: Oliver Albertsen]
 [Class: ITS22v | 7. Semester]
 [Guidance Counselor: Constantin Alexandru Gheorghiasa]
 [Deadline: 14-06-2023]

31

The first part of the code checks whether the kill flag is set to 1, this is to break out of the loop if the operator

decides to exit the server. The next part is the logic that handles the needed incoming data for a callback to

be valid(see Figure twenty - line 137-147). The data needs to be sent in the order as the variables are written

in the code, otherwise, the sessions won’t show up. A connection will be made to the server without the

values, but no active sessions will show up. As mentioned in the section about Redirectors a check could be

implemented with either a JWT or a key, to ensure that only our implant can connect back, this could help

the OPSEC by protecting the server from being fingerprinted. Each value that is received is base64 decoded

and assigned to a variable that stores the data. The data that is being received for the callback are the

following: username, administrator status, operating system, hostname, and public IP address.

When all the values above are received, a check will be made on the `admin` variable, the implant sends

either a 0 or 1 when checking if the user is an administrator. A 0 means false and 1 means true. If the value

is true, then “Yes” will be assigned to the `admin` variable. This gives the operator an overview if he/she has

an elevated session, which means higher privileges.

Moving on to line 154, a check is made whether the operating system contains `windows`. If true 1 will be

assigned to a new variable called ̀ pay_val`. If false it will be set to 2, this is a feature to prepare the framework

to support Linux-based implants. The next few variables are used to capture the time(cur_time) and

date(date), this is used inside the sessions table to have an overview of when an agent checked in. The date

and time are then combined in the variable `time_record` using an f-string in the desired format for the

session table.

The last part of the function is the most essential. Its task is to take the data mentioned above, add it to a list

and append that list to the target list, it then goes on to print “callback was received” with the hostname

and public IP address.

Def nimplant()

The nimplant function's main functionality is the generation of the implant which is called `nimplant`. The

function is using a base template containing the necessary code for the compiling of the implant. The

function will patch the IP address (callback address) and callback port with the users input, this automates

the process for the operator and there is no need to edit and compile the implant manually. When the

implant is compiled, it will be saved with a random name to the ̀ Generated Implants` folder as seen in Figure

twenty-two.

Figure 22: Nimplant function compiling and saving the implant.

In figure twenty-three the full code for the function can be seen.

 [Bachelor Project]
 [Student: Oliver Albertsen]
 [Class: ITS22v | 7. Semester]
 [Guidance Counselor: Constantin Alexandru Gheorghiasa]
 [Deadline: 14-06-2023]

32

Figure 23: Full code of the nimplant function

The first section of the code sets up two global variables, which are utilized to modify the variables within

the implant during compilation. Subsequently, random names are generated, which serve as the names for

the copied templates used in the compilation process, as well as the final name for the implant. Creating a

random name for the copied template is necessary to preserve the original template for future use.

The following portion (lines 180-184) makes use of the Python `os` module, particularly the

`path.expanduser` function to get the path of the implant and the implant folder. This function is employed

because the regular `os.path.exists` cannot handle the '~' character. The inclusion of this character is

necessary because the script is unaware of the specific home folder in which it is currently running. The next

if statements checks if the implant template exists, if true it will take a copy of the template and give it the

random name generated earlier, it will then move the newly copied file to the `Generated implants` folder.

The next part(line 187-192) takes input from the operator, the operator is presented with choosing either to

use the listener address and port or specify another IP-Address. The port will always be the one specified at

the listener generation. For the implant to be compiled dynamically with different IP-Addresses and ports,

the next part is crucial. The solution I made, to enable the dynamic generation of the implants, is to embed

two hardcoded strings in the implant, the server will search and replace the two strings in Figure twenty-four

(“INPUT_IP and INPUT_PORT”

 [Bachelor Project]
 [Student: Oliver Albertsen]
 [Class: ITS22v | 7. Semester]
 [Guidance Counselor: Constantin Alexandru Gheorghiasa]
 [Deadline: 14-06-2023]

33

Figure 24: Implant code, with the values that need to be patched by the server.

It was implemented using pythons `with open` statement and the `read()` and `replace()` methods. The

implementation starts on line 195 and ends on 204. It starts with opening and reading the contents of the

copied `implant.nim` template, it will then search and replace the word “INPUT_IP” with the `host_ip`. This

action will be assigned to the variable `patch_host`. Pythons `with open` statement doesn’t support reading

and writing to the same file simultaneously, for the changes to take effect the file has to be opened in write

mode afterward and the changes much be written to the file and then the file will be closed again. This

process is repeated for the port variable as well.

The last part of the code(line 205-215) is responsible for compiling the implant, it utilizes the `subprocess`

module from Python. This module allows the Python script to execute local system commands, capture

stdout, stderr and take stdin. This is very powerful and can help a script perform a wide variety of tasks and

actions. However, the module must be used with care as it introduces a weak point in the code, potentially

giving an attacker RCE, if the script is hosted or exposed to the internet. One of the ways to mitigate this

vulnerability is to prevent the user from inputting any data into the arguments(stdin) that subprocess takes.

In PrimusC2 this is mitigated by not taking any stdin from the operator in any of the subprocess commands.

The subprocess command calls the nim compiler, it uses the flags “-d:mingw", "-d:release", "--app:gui", "-

d:strip", and "--cpu:amd64". The first flag is specifying which compiler to use, in this case, it’s mingw, the

second flag is instructing the compiler to build a release version which removes a lot of debug features, the

third flag is instructing the compiler to execute the implant without opening a console window, the fourth

flag is instructing the compiler to strip the implant of debug information and any information that is bundled

into the implant. This is an effective measure to protect the implant when being reverse-engineered by the

blue team. The last flag is instructing the compiler for which CPU type the implant should be compiled for.

The next portion is utilizing the `rich` module to create a loading bar while the implant is compiling. When

complete, a check is made to ensure that the compiled executable is present in the “Generated Implants”

folder, if true a message will print where the implant was saved to(see figure twenty-two), if false an error

message is printed. Lastly, the code will do a cleanup and remove the copied template that was used earlier,

to declutter the “Generated Implants” folder.

Def redirector(LPORT)

The automated redirector functionality is essential for masking the address of the C2 Server. The function is

automating the setup of keys, cloud VPS, redirector configurations, and clean-up. The function is utilizing

Terraform and SSH to provision and configure the VPS and it’s using the same logic as Def nimplant() to patch

variables in the templates. This is done to give the operator a choice as to which port the VPS should listen

on and what rules needs to be changed in the firewall of the VPS.

Below in Figure twenty-five, the full code for the function can be seen.

 [Bachelor Project]
 [Student: Oliver Albertsen]
 [Class: ITS22v | 7. Semester]
 [Guidance Counselor: Constantin Alexandru Gheorghiasa]
 [Deadline: 14-06-2023]

34

Figure 25:The full code for the Redirector function

 [Bachelor Project]
 [Student: Oliver Albertsen]
 [Class: ITS22v | 7. Semester]
 [Guidance Counselor: Constantin Alexandru Gheorghiasa]
 [Deadline: 14-06-2023]

35

The function takes one parameter which is “LPORT”, this is the listening port that will be specified when

creating a listener. The initial part of the code(line 267-285) is responsible for establishing whether an SSH

keypair already exists on the system. If not, it will start the generation of an SSH keypair that will be used by

terraform to provision the VPS/redirector. The generation of the keypair makes use of the ̀ RSA` module from

the main module `Cryptodome`. When the keys have been generated, they are moved to the default

location(~/.ssh/) where SSH keys are stored, this is the location where the terraform script will look for keys

to provision the VPS.

The next portion of the code is responsible for patching the variables within the terraform script and script.sh.

This is done to ensure that the operator can dynamically provision a redirector with a custom port. This takes

away the tedious task of editing the script for each deployment and engagement. It uses the same logic as

Def nimplant() to patch the variables in “redirector_template.tf” and “script.sh”. A copy of the templates is

made and then the variable “LPORT”(see Figure twenty-six and seven) is replaced by the ”LPORT” parameter

provided in the function's arguments and the changes are written to the current copy.

Figure 26: Terraform code – variable patching.

 [Bachelor Project]
 [Student: Oliver Albertsen]
 [Class: ITS22v | 7. Semester]
 [Guidance Counselor: Constantin Alexandru Gheorghiasa]
 [Deadline: 14-06-2023]

36

Figure 27: script.sh - variable patching

The next part is the actual provisioning performed by terraform(line 303-312. The `os` module is used to

change the current working directory into the terraform directory, this is needed to give terraform access to

all the configuration files needed. From this point the `os.system` module is used to execute system

commands and the folder gets initiated with the terraform command “terraform init” this is needed for

terraform to know which provider to use etc. in this case the provider is Digital Ocean, but it could be AWS

or another cloud provider. Moving on, the terraform command is saved into a variable that is executed using

the `subprocess` module. The terraform command will reach out to the Digital Ocean API and create a VPS;

from this point, it will use the ssh private key to authenticate and start to provision the VPS. A visualized

diagram of the flow can be observed in figure twenty-eight.

 [Bachelor Project]
 [Student: Oliver Albertsen]
 [Class: ITS22v | 7. Semester]
 [Guidance Counselor: Constantin Alexandru Gheorghiasa]
 [Deadline: 14-06-2023]

37

Figure 28: Terraform command flow.

When the VPS has been created, step one of the setup will begin, Terraform will then upload a setup script

called “setup.sh”. When uploaded it will utilize the “remote-exec” functionality built in to terraform to

execute commands remotely. Remote-exec will change the permissions of the script using `chmod` in this

case the command will only make the script executable, so it's prepared for step two in the setup phase.

Step two will initiate an SSH connection from the C2 server to the VPS and execute “script.sh”. Script.sh is

configuring the SOCAT relay and it will extract the public IP and print it to the console, this is used to complete

the SOCAT relay. Regex is used in line 318 to extract the IP-Address from the output of the terraform

command, the regex pattern is matching for the word “droplet_ip_address”. A capture group is created, this

 [Bachelor Project]
 [Student: Oliver Albertsen]
 [Class: ITS22v | 7. Semester]
 [Guidance Counselor: Constantin Alexandru Gheorghiasa]
 [Deadline: 14-06-2023]

38

group looks for a pattern that matches an IP-address with 4 octets and dots In between. As mentioned earlier

this IP is used to configure the reverse port forward to the VPS. The reverse port forward is in place to “pull”

back all the traffic that SOCAT has forwarded to the localhost address on the VPS. Below in Figure twenty-

nine, the packet flow can be seen, and it’s showing how the traffic arriving at the redirectors listening address

is forwarded to the redirectors local address. The C2 server then pulls all the traffic from this address by

establishing a reverse port forward via SSH.

Figure 29: Redirector packet flow

 [Bachelor Project]
 [Student: Oliver Albertsen]
 [Class: ITS22v | 7. Semester]
 [Guidance Counselor: Constantin Alexandru Gheorghiasa]
 [Deadline: 14-06-2023]

39

Reflections – PrimusC2 server
The development of the server component for the PrimusC2 framework was a complex matter as it

demanded many moving parts to work seamlessly and in conjunction with each other. The focus during the

development phase was to meet the initial requirements for the basic functionality of the server. As the

development progressed and the requirements were slowly met, I started to implement other features such

as the redirector automation, and payload server.

However, some of the challenges during development turned out to be larger and more complex changes

that took a substantial amount of time and effort to overcome and progress from. Some of the challenges

were the communication between the implant and server, the initial implants were written I python and had

no problem connecting back to the server. However, after I changed the implant language to NIM, many

problems arose, including the issue of connecting back to the server. The issue was solved by trial and error

and reading the documentation for the Nim language.

While all the basic requirements were met, there are a few features that I feel are missing from the project

to elevate it to a new level. The first missing feature is the lack of smart redirectors, while the dumb pipe

redirector is an initial good way of masking the server address, it is still very flawed. The next one Is the lack

of encryption of the data streams. Furthermore, the implementation of another C2 channel, besides TCP

would benefit the framework, providing additional options for an operator and giving the opportunity to

bypass security measures if TCP is blocked. The main issue with only one channel is the lack of redundancy.

As mentioned earlier in the C2 infrastructure section, encryption is very important for the safety of the

infrastructure and the safety of the clients sensitive data. Data is always moving around and is often stored

in different places; the time constraints prevented me from implementing encryption of the data streams.

To mask some of the traffic, all data sent from the implant to the server is base64 encoded, however, an

issue came up which prevented me from sending base64 encoded commands to the implant from the server,

it simply wouldn’t decode/recognize the commands on the implant side. This challenge was not solved in

time and it’s weakening the status of the OPSEC.

The development of a C2server was a complex and very time-consuming task, it has sharpened my instincts

while coding and it has improved my ability to code and understand python. Many road bumps were hit

during the development phase, which challenged me a lot, and in return helped me to improve my technical

abilities within offensive coding. The server managed to meet the requirements, the basic functionality

needed for simple operation is in place, and the newer features are available for use as well.

Implant – Nimplant
Without the implant, there is no C2 framework. The implant is the working party in the C2 framework, its

role is to perform callbacks and execute commands received by the C2 server on the system that it’s present

on. A lot of features are demanded from an implant, it needs stealth, advanced capabilities, bypassing of

security measures, and more.

Below are the requirements that I had for the implant in my C2 framework. The implant is called Nimplant.

- Retrieve basic information from the

infected host.

- Use the TCP C2 Channel.

- Execute commands received from the C2

server.

- Bypass static analysis - windows defender.

Implant overview and features
The implant is written in the programming language Nim. Nim is a statically typed compiled programming

language. This means that at compile time all the variable types are known and declared by the developer.

One of the advantages of Nim is that it can be cross-compiled to multiple operating systems and

architectures. Nim has a large standard library which makes programming easier and faster. I’ve chosen the

language because I needed a compiled language, so the implant is portable to different systems and it’s easier

as a developer to bypass security measures since you do not need an interpreter on the target host.

Nimplant uses as mentioned in the Server section TCP as its C2 channel, this provides a basic form of

communication, but it also leaves a small fingerprint, helping it in staying undetected. Nimplant has the

capability to retrieve some initial information about the target host at the first callback, it will send; the

current user, if the user is an administrator, transmit the OS, transmit the public IP-Address, and the

hostname of the system. This is used to populate the sessions table and give the operator a basic overview

of the target system.

Nimplant also offers a bypass of Antimalware Scan Interface (AMSI)[60] – This is an implementation that is

made to prepare for the new features in later upcoming versions of PrimusC2, that will perform malicious

activities in the context of the process. If AMSI is not disabled these actions will be blocked and sent to

inspection at the AV vendor.

The next feature is the GetAV command, this command will give the operator a way to determine what kind

of antivirus that is currently running on the system, this is great during the enumeration phase, where it is

essential for the operator to outline an overview of the target system and what security measure they are

up against. See Figure thirty for an example.

Figure 30: GetAV command in Nimplant

Nimplant offers two methods of executing PowerShell in the system it resides in. The first method is using

the `execProcess` functionality from Nim, which will launch the PowerShell process and execute a command

at the same time, this is considered very “noisy” on the network and will produce a lot of logs regarding the

commands executed, as PowerShell is called as a process. The second method is by loading “Common

Language Runtime”(CLR) and executing PowerShell in an unmanaged runspace, this enables the program to

run PowerShell without executing powershell.exe. The last method is more advanced and stealthier, however

in PrimusC2 current state, it does only support the execution of one parameter.

I have a couple of features planned for future versions of PrimusC2 and nimplant, this includes advanced

features such as execute-assembly, inline-assembly, and execution of commands without `execProcess`.

 [Bachelor Project]
 [Student: Oliver Albertsen]
 [Class: ITS22v | 7. Semester]
 [Guidance Counselor: Constantin Alexandru Gheorghiasa]
 [Deadline: 14-06-2023]

41

Functionality
The initial part of the code in Nimplant is responsible for creating the socket object that is needed for the

TCP channel to the server. Furthermore, this part of the code has the task of sending the necessary

information about the target to the server. This information is used to populate the session table and give

the operator an overview of the target system. Below in Figure thirty-one, the code for the initial portion

can be seen.

Figure 31: First portion of Nimplant

 [Bachelor Project]
 [Student: Oliver Albertsen]
 [Class: ITS22v | 7. Semester]
 [Guidance Counselor: Constantin Alexandru Gheorghiasa]
 [Deadline: 14-06-2023]

42

The socket is initiated and declared in line 23, this is using the native `net` module from the Nim standard

library, the socket object is stored in the variable `var client`. In the following line, a connection is made to

the C2 server with the variables that have been patched into the implant by the server. Next is the

function(inbound_comm) which handles incoming connections. When a message is received it saves it into

the variable `RecievedMessage`, this variable is then returned.

From line 34 to 69 is the code that is responsible for handling the gathering and transmission of information,

that is needed for the sessions table on the server. The first bit of information transmitted is the username,

to extract this from the system, the following approach has been taken. A string buffer is created on line 34.

It has the length of `UNLEN + 1`. UNLEN is a constant that represents the maximum length of a username in

Windows. On the next line a DWORD[61] variable is created, and it contains the length of the buffer, this is

saved into `var cb`. Then the `GetUserNameA` function from Win32 API is called. It takes two parameters

which is a pointer to the buffer and the length of the buffer. Lastly, the buffer is set to the length of the

username and it’s excluding the terminating null character.

Moving on to the next part, here it's determined if the user is an administrator using the built-in function in

the `os` module from Nim, the function returns either a 0 if false or a 1 if true. An if statement will send the

appropriate value to the server depending on the user's status. Next up the operating system is extracted

and transmitted, this is done by using `hostOS` from the standard Nim library. The same approach is taken

with the hostname which is using the `GetHostname` function. Lastly, the public IP-Address of the system is

fetched using a public Get-IP site, where a GET HTTP request is sent and the `getContent` function from the

`httpclient` module is used to get only the content from the HTTP response. Any whitespaces are then

stripped away from the response, and it’s transmitted to the server.

The next functionality in question is the `GetAV` function and `PatchAmsi` function, the code can be seen in

Figure thirty-two.

 [Bachelor Project]
 [Student: Oliver Albertsen]
 [Class: ITS22v | 7. Semester]
 [Guidance Counselor: Constantin Alexandru Gheorghiasa]
 [Deadline: 14-06-2023]

43

Figure 32:Code for GetAv and PatchAmsi

The `GetAV` function is using Windows Management Instrumentation(WMI[62]) to extract the installed anti-

virus software that resides on the given system. The information is extracted by querying the security center

2[63] namespace with WMI. It works by utilizing the `GetObject` function to connect to `securitycenter2` and

then a WMI query is used to extract the listed antivirus products and they and then added to a string.

The AMSI bypass is the most complex part of the implant codebase, and it involves advanced operations in

memory and the use of Win32 API. Many different bypasses of AMSI exist, and some will get detected by

Security vendor products that perform static analysis. The bypass[67] I have implemented is patching the

AMSI provider DLL from Microsoft, the DLL in question is “MpOav.dll”. To bypass/break AMSI, it’s needed to

break one of the chains leading to AMSI(see Figure thirty-three). In this case, I am patching the

`DllGetClassObject` function inside the provider DLL(MpOav.dll). This will interfere with the initialization of

AMSI and thereby bypass it.

 [Bachelor Project]
 [Student: Oliver Albertsen]
 [Class: ITS22v | 7. Semester]
 [Guidance Counselor: Constantin Alexandru Gheorghiasa]
 [Deadline: 14-06-2023]

44

Figure 33: AMSI overview

The patch that is being applied(line 74) translates into the following assembly instructions in Figure thirty-

four :

Figure 34: Assembly instructions for AMSI patch

The instructions will move ` 0x80070057` to the EAX register, the value is equal to an HRESULT[64] code for

`E_INVALIDARG`. When AMSI sees this HRESULT code it will bypass the part where it does its scan because

of the invalid argument and the scan result would be “0” – which equals to “AMSI_RESULT_CLEAN”. `ret` will

return control to the calling function.

The last part of the code is handling the commands received from the server and the code for loading CLR

and executing PowerShell in an unmanaged runspace. The remaining code can be seen below in Figure

thirty-five.

 [Bachelor Project]
 [Student: Oliver Albertsen]
 [Class: ITS22v | 7. Semester]
 [Guidance Counselor: Constantin Alexandru Gheorghiasa]
 [Deadline: 14-06-2023]

45

Figure 35: The remaining code for Nimplant

The initial while true statement is making sure to keep the implant listening for incoming commands. The

`inbound_comm` function is saved into the variable `var message`. This means that all instructions from the

server will be saved in that variable. Moving on to the if statements starting on line 124. These are in place

to do certain actions when a command is received from the server. It’s built to check for certain matching

strings, if none of them are true it will go to the else statement that will execute the command as a PowerShell

system command utilizing `execProcess` as mentioned in the previous section. The if statement that checks

for the “exit” command will close the socket and break out of the loop upon receiving the “exit” string from

the server. The `elif` statements that have the “discard” keyword, are doing “nothing” upon receiving a

matching string, the discard keyword is equivalent to “pass” in Python. The reason for using the discard

 [Bachelor Project]
 [Student: Oliver Albertsen]
 [Class: ITS22v | 7. Semester]
 [Guidance Counselor: Constantin Alexandru Gheorghiasa]
 [Deadline: 14-06-2023]

46

keyword is that the commands that have been issued, are executed server-side, and the implant does not

need to execute anything. The `elif` statement on line 138, checks for the matching string “pwsh” on index 0

of the received message, if true, it will go into the statement and start the loading of CLR and execution of

PowerShell in an unmanaged runspace. CLR and a runspace are loaded via the `RunspaceFactory` class and

then a pipeline is created, the pipeline can execute PowerShell commands. This can be seen on line 148,

where the command is at index 1 in the received message from the server. When the pipeline is executed in

the unmanaged runspace, the output is saved into `results` and is then sent to the server.

Evasion
One of the requirements for the implant was that it needs to bypass windows defender static analysis and to

accomplish this, several actions and precautions were taken. The first step that was taken is to use the

`strenc` library from Nim. This library is XOR encrypting all strings within the code at Compile time, using

macros in the Nim language. The key is different each time of the compilation and this means that the

signature of the binary is changing, making it harder to be detected by static analysis. Another aspect of the

evasion part was to choose the Nim language itself. It’s a language that hasn’t seen a wide implementation

yet and therefore less Nim malware has been analyzed by Microsoft and other security vendors. This helps

the implant in evading the security measures because of the different approaches to executing code and the

use of different functions that aren't associated with well-known types of malware.

Furthermore, the use of a simple and low-level C2 channel helps the implant in staying undetected, as the

code needed for the callback functionality is very benign and does not produce a large fingerprint on the disk.

The major downfall in terms of the evasion for the implant is the lack of obfuscation and encryption. This

could help strengthen the implant's position against tougher security solutions such as advanced EDRs and

behavioral analysis.

Reflections – Nimplant
The development of the implant was a steep learning curve for me. The introduction of an entirely new

programming language proved to be a challenge but an eye-opener as well. The first implants were written

in pure Python, this meant that they needed an interpreter to be executed. For a C2 framework this wouldn’t

work very well, because as an operator you do not know what is installed on a system when you deploy the

implant, and in this case, you can’t be dependent on the presence of a Python interpreter. Nim is a compiled

language and can be compiled for Windows and Linux. This gave me the possibility to make the implant

portable to many different systems and tweak the compile flags if needed. When porting the implant from

Python to Nim, many problems arose with getting the Nim socket object to connect successfully to the server

socket object, a lot of debugging using tools like Netcat was required to understand the inner workings of

the Nim socket, I have previous experience with the python socket, this helped in understanding the Nim

socket.

As with the server, the requirements were slowly met and as I progressed, I slowly started to add more

features to the implant, such as the AMSI bypass, GetAV command, and the execution of PowerShell in an

unmanaged runspace. This gave the implant more advanced capabilities, propelling it from a standard

execution of system commands to an advanced implant that can empower the operators abilities on an

engagement.

One of the issues that arose that couldn’t be solved due to the time constraints, was the base 64 encoding

of all data going in and out of the implant. I successfully implemented the functionality for the implant to

 [Bachelor Project]
 [Student: Oliver Albertsen]
 [Class: ITS22v | 7. Semester]
 [Guidance Counselor: Constantin Alexandru Gheorghiasa]
 [Deadline: 14-06-2023]

47

base64 encode data and send it to the server. However, I was not successful in base64 decoding the data

received from the server, I suspect there is an issue in how the data is encoded when transferred over the

socket, but I haven’t had the time to go through the entire Nim socket documentation to resolve the issue in

time.

Overall, the implant is effective and useful in its current state, but I will continue the development to improve

and implement more features.

Reflections
The thesis was written with the intention of expanding my knowledge within C2 frameworks and spreading

knowledge about this topic. Furthermore, I was seeking to improve my abilities within programming and

specifically offensive programming. The research period where all base knowledge was acquired about the

most popular C2 frameworks, the inner workings of a C2, and the knowledge about how effective and covert

Infrastructure should be configured, was a great pivot point for me to start the development of my own C2

framework called “PrimusC2.”

The development of PrimusC2 was a great learning experience, however, many issues arose during the

development phase, and those turned out to be the greatest learning experience of them all. When facing

these complex issues on topics where I had little to no knowledge, I was forced out of my comfort zone to

discover new paths to solve the issues and find creative ways to get around the problems I couldn’t solve.

The thesis could have benefited from having a structured project planning system from the start, this could

have enabled me to track my time more efficiently and keep an overview of what components that are

complete and those still in the backlog waiting. The lack of a planned project structure resulted in the

research, development, and thesis writing period melting into one, which could be chaotic at times. This

could have been solved by using tools like a Kanban board or a Gantt diagram.

Overall, the project was successful in many areas, but some components of the project could have been

improved to provide a smoother and more linear completion of the project.

Conclusion
A C2 framework is a complex piece of technology, it consists of a server and an implant. Its inner workings

are highly advanced and can consist of simple socket connections to highly advanced assembly instructions.

C2 frameworks have different categories and can be configured to fit many different types of engagements.

Some of the most popular C2 frameworks in today’s age is Cobalt Strike, Silver, and Brute Ratel, all these

have different strength and weaknesses but are still actively used by threat actors to compromise large

enterprises all over the world.

The infrastructure around a C2 framework is as important as the framework itself, it’s the backbone for

maintaining good OPSEC during the engagement and to provide resilient ad dependable servers and

machines to support the engagement. Many different components exist within a secure C2 infrastructure,

this includes redirectors, domains, automation, and so on. All these combined play a crucial role in securing

the infrastructure around the C2 while the red team performs operations on the target.

The design of a C2 framework from scratch is a complicated task, many components are needed for the

framework to live up to modern standards. If the framework needs to be used by a red team on active

 [Bachelor Project]
 [Student: Oliver Albertsen]
 [Class: ITS22v | 7. Semester]
 [Guidance Counselor: Constantin Alexandru Gheorghiasa]
 [Deadline: 14-06-2023]

48

engagements for clients, the framework needs to be thoroughly tested, and have considerations for its

operational security. The Red Team has the responsibility for the clients data, there is no margin for error

when handling data in transit or at rest. Furthermore, the framework needs to be able to generate different

components dynamically and provide advanced automation for the C2 server and the infrastructure around

it. If a connection to a C2 is blocked, then another instance could be provisioned with different values, that

could bypass the security solutions for the egressing traffic.

To conclude, for a self-developed C2 framework to be used in a real engagement by a red team, the team

needs extensive knowledge within the field of C2 servers and implant development, they need to be aware

of the many pitfalls and challenges that will arise doing development. They will need to understand the

importance of operational security and implement features that can emulate the advanced TPP’s that threat

actors use.

Bibliography
[1]Python Software Foundation, “3.7.3 Documentation,” Python.org, 2019.

https://docs.python.org/3/ (accessed Apr. 17, 2023).

[2]“Python Check if a file or directory exists,” GeeksforGeeks, Nov. 25, 2019.

https://www.geeksforgeeks.org/python-check-if-a-file-or-directory-exists/ (accessed Apr. 20, 2023).

[3]“Delete an entire directory tree using Python shutil.rmtree method,” GeeksforGeeks, Dec. 03,

2019. https://www.geeksforgeeks.org/delete-an-entire-directory-tree-using-python-shutil-rmtree-

method/ (accessed Apr. 25, 2023).

[4]“Simple chat server in Nim: Basics,” Tejasjadhav.xyz, 2019. https://blog.tejasjadhav.xyz/simple-

chat-server-in-nim-using-sockets/ (accessed Apr. 28, 2023).

[5]“Documentation,” Nim Programming Language, 2023. https://nim-lang.org/documentation.html

(accessed Apr. 28, 2023).

[6]lichb0rn, “Get IP address from python,” Stack Overflow, Feb. 04, 2018.

https://stackoverflow.com/questions/48606440/get-ip-address-from-python (accessed Apr. 29,

2023).

[7]pistacchio, “How to quiet SimpleHTTPServer?,” Stack Overflow, May 18, 2012.

https://stackoverflow.com/questions/10651052/how-to-quiet-simplehttpserver (accessed May 03,

2023).

[8]python, “cpython/server.py at b701dce340352e1a20c1776feaa368d4bba91128 ·

python/cpython,” GitHub, 2017.

https://github.com/python/cpython/blob/b701dce340352e1a20c1776feaa368d4bba91128/Lib/http/se

rver.py#L571 (accessed May 03, 2023).

[9]byt3bl33d3r, “byt3bl33d3r/OffensiveNim: My experiments in weaponizing Nim (https://nim-

https://docs.python.org/3/
https://www.geeksforgeeks.org/python-check-if-a-file-or-directory-exists/
https://www.geeksforgeeks.org/delete-an-entire-directory-tree-using-python-shutil-rmtree-method/
https://www.geeksforgeeks.org/delete-an-entire-directory-tree-using-python-shutil-rmtree-method/
https://blog.tejasjadhav.xyz/simple-chat-server-in-nim-using-sockets/
https://blog.tejasjadhav.xyz/simple-chat-server-in-nim-using-sockets/
https://nim-lang.org/documentation.html
https://stackoverflow.com/questions/48606440/get-ip-address-from-python
https://stackoverflow.com/questions/10651052/how-to-quiet-simplehttpserver
https://github.com/python/cpython/blob/b701dce340352e1a20c1776feaa368d4bba91128/Lib/http/server.py#L571
https://github.com/python/cpython/blob/b701dce340352e1a20c1776feaa368d4bba91128/Lib/http/server.py#L571

 [Bachelor Project]
 [Student: Oliver Albertsen]
 [Class: ITS22v | 7. Semester]
 [Guidance Counselor: Constantin Alexandru Gheorghiasa]
 [Deadline: 14-06-2023]

49

lang.org/),” GitHub, Mar. 2023. https://github.com/byt3bl33d3r/OffensiveNim (accessed May 03,

2023).

[10]“Crontab.guru - The cron schedule expression editor,” Crontab.guru, 2023.

https://crontab.guru/#@hourly (accessed May 03, 2023).

[11]“Git - Documentation,” Git-scm.com, 2023. https://www.git-scm.com/doc (accessed May 01,

2023).

[12]“Nim forum,” Nim-lang.org, 2023. https://forum.nim-lang.org/ (accessed May 03, 2023).

[13]“randomname,” PyPI, Jan. 29, 2023. https://pypi.org/project/randomname/ (accessed May 03,

2023).

[14]“subprocess — Subprocess management,” Python documentation, 2023.

https://docs.python.org/3/library/subprocess.html (accessed May 03, 2023).

[15]blackarrowsec, “blackarrowsec/redteam-research: Collection of PoC and offensive techniques

used by the BlackArrow Red Team,” GitHub, Jan. 28, 2021.

https://github.com/blackarrowsec/redteam-research (accessed May 01, 2023).

[16]IppSec, “DIY C2 - Malleable Agent Config,” YouTube. Oct. 04, 2021. Accessed: May 04,

2023. [YouTube Video]. Available: https://www.youtube.com/watch?v=FiT7-zxQGbo

[17]D. Breuker, “Learning Silver C2 (09) - Execute Assembly,” Dominicbreuker.com, Nov. 06,

2022. https://dominicbreuker.com/post/learning_Silver_c2_09_execute_assembly/ (accessed May

03, 2023).

[18]“CyberChef,” Github.io, 2023. https://gchq.github.io/CyberChef/#input=TUE9PQ (accessed

May 06, 2023).

[19]“Nim basics,” Github.io, 2018. https://narimiran.github.io/nim-basics/ (accessed May 03,

2023).

[20]map[name:Cas van Cooten, “Building a C2 Implant in Nim - Considerations and Lessons

Learned,” Casvancooten.com, Aug. 25, 2021. https://casvancooten.com/posts/2021/08/building-a-

c2-implant-in-nim-considerations-and-lessons-learned/ (accessed May 01, 2023).

[21]“Nim playground,” Eu.org, 2023. https://nimplay.gabb.eu.org/ (accessed May 03, 2023).

[22]kanishka10, “AV Evasion Archives - Hackercool Magazine,” Hackercool Magazine, Oct. 17,

2022. https://www.hackercoolmagazine.com/category/hacking/bypass-anti-malware/ (accessed May

07, 2023).

[23]“Terraform | HashiCorp Developer,” Terraform | HashiCorp Developer, 2023.

https://developer.hashicorp.com/terraform (accessed May 08, 2023).

https://github.com/byt3bl33d3r/OffensiveNim
https://crontab.guru/#@hourly
https://www.git-scm.com/doc
https://forum.nim-lang.org/
https://pypi.org/project/randomname/
https://docs.python.org/3/library/subprocess.html
https://github.com/blackarrowsec/redteam-research
https://www.youtube.com/watch?v=FiT7-zxQGbo
https://dominicbreuker.com/post/learning_sliver_c2_09_execute_assembly/
https://gchq.github.io/CyberChef/#input=TUE9PQ
https://narimiran.github.io/nim-basics/
https://casvancooten.com/posts/2021/08/building-a-c2-implant-in-nim-considerations-and-lessons-learned/
https://casvancooten.com/posts/2021/08/building-a-c2-implant-in-nim-considerations-and-lessons-learned/
https://nimplay.gabb.eu.org/
https://www.hackercoolmagazine.com/category/hacking/bypass-anti-malware/
https://developer.hashicorp.com/terraform

 [Bachelor Project]
 [Student: Oliver Albertsen]
 [Class: ITS22v | 7. Semester]
 [Guidance Counselor: Constantin Alexandru Gheorghiasa]
 [Deadline: 14-06-2023]

50

[24]S. anthemtotheego, “Don’t Be Rude, Stay: Avoiding Fork&Run .NET Execution With

InlineExecute-Assembly,” Security Intelligence, Jul. 08, 2021.

https://securityintelligence.com/posts/net-execution-inlineexecute-assembly/ (accessed May 08,

2023).

[25]“Terraform Registry,” Terraform.io, 2023.

https://registry.terraform.io/providers/digitalocean/digitalocean/latest/docs (accessed May 08,

2023).

[26]F. Dib, “regex101: build, test, and debug regex,” regex101, 2023. https://regex101.com/

(accessed May 13, 2023).

[27]bluscreenofjeff, “bluscreenofjeff/Red-Team-Infrastructure-Wiki: Wiki to collect Red Team

infrastructure hardening resources,” GitHub, Aug. 08, 2017.

https://github.com/bluscreenofjeff/Red-Team-Infrastructure-Wiki#automating-deployments

(accessed May 13, 2023).

[28]CSRC Content Editor, “tactics, techniques, and procedures (TTP) - Glossary | CSRC,” Nist.gov,

2015. https://csrc.nist.gov/glossary/term/tactics_techniques_and_procedures (accessed May 15,

2023).

[29]“C2 Frameworks - Red Canary Threat Detection Report,” Red Canary, 2023.

https://redcanary.com/threat-detection-report/trends/c2-frameworks/ (accessed May 15, 2023).

[30]“Threat Actors Adopt Silver To Popular C2 Frameworks,” Information Security Buzz, Jan. 24,

2023. https://informationsecuritybuzz.com/threat-actors-adopt-silver-popular-c2-frameworks/

(accessed May 15, 2023).

[31]J. Tubberville and J. Vest, Red Team Development and Operations. 2020.

[32]“The C2 Matrix,” Thec2matrix.com, 2023. https://www.thec2matrix.com/matrix (accessed May

15, 2023).

[33]R. Mudge, “Infrastructure for Ongoing Red Team Operations - Cobalt Strike Research and

Development,” Cobalt Strike Research and Development, Sep. 09, 2014.

https://www.cobaltstrike.com/blog/infrastructure-for-ongoing-red-team-operations/ (accessed May

17, 2023).

[34]J. Dimmock, “Designing Effective Covert Red Team Attack Infrastructure,”

bluescreenofjeff.com - a blog about penetration testing and red teaming, Dec. 05, 2017.

https://bluescreenofjeff.com/2017-12-05-designing-effective-covert-red-team-attack-infrastructure/

(accessed May 17, 2023).

https://securityintelligence.com/posts/net-execution-inlineexecute-assembly/
https://registry.terraform.io/providers/digitalocean/digitalocean/latest/docs
https://regex101.com/
https://github.com/bluscreenofjeff/Red-Team-Infrastructure-Wiki#automating-deployments
https://csrc.nist.gov/glossary/term/tactics_techniques_and_procedures
https://redcanary.com/threat-detection-report/trends/c2-frameworks/
https://informationsecuritybuzz.com/threat-actors-adopt-silver-popular-c2-frameworks/
https://www.thec2matrix.com/matrix
https://www.cobaltstrike.com/blog/infrastructure-for-ongoing-red-team-operations/
https://bluescreenofjeff.com/2017-12-05-designing-effective-covert-red-team-attack-infrastructure/

 [Bachelor Project]
 [Student: Oliver Albertsen]
 [Class: ITS22v | 7. Semester]
 [Guidance Counselor: Constantin Alexandru Gheorghiasa]
 [Deadline: 14-06-2023]

51

[35]C. Navarrete, Durgesh Sangvikar, A. Guan, Y. Fu, Y. Jia, and Siddhart Shibiraj, “Cobalt Strike

Analysis and Tutorial: How Malleable C2 Profiles Make Cobalt Strike Difficult to Detect,” Unit 42,

Mar. 16, 2022. https://unit42.paloaltonetworks.com/cobalt-strike-malleable-c2-profile/ (accessed

May 17, 2023).

[36]“C3,” Withsecure.com, 2019. https://labs.withsecure.com/tools/c3 (accessed May 17, 2023).

[37]WithSecureLabs, “WithSecureLabs/C3: Custom Command and Control (C3). A framework for

rapid prototyping of custom C2 channels, while still providing integration with existing offensive

toolkits.,” GitHub, Jan. 20, 2023. https://github.com/WithSecureLabs/C3 (accessed May 17, 2023).

[38]S. Gallagher, “The Phantom Menace: Brute Ratel remains rare and targeted,” Sophos News,

May 18, 2023. https://news.sophos.com/en-us/2023/05/18/the-phantom-menace-brute-ratel-

remains-rare-and-targeted/ (accessed May 18, 2023).

[39]“Cobalt Strike | Adversary Simulation and Red Team Operations,” Cobalt Strike Research and

Development, May 10, 2023. https://www.cobaltstrike.com/ (accessed May 18, 2023).

[40]T. Stack, “Hackers love Cobalt Strike: It was spotted in nearly a quarter of 2021 intrusions.

Here’s how to spot its use,” The Stack, Feb. 02, 2022. https://thestack.technology/detecting-cobalt-

strike/ (accessed May 18, 2023).

[41]“Cobalt Strike: Favorite Tool from APT to Crimeware | Proofpoint US,” Proofpoint, Jun. 23,

2021. https://www.proofpoint.com/us/blog/threat-insight/cobalt-strike-favorite-tool-apt-crimeware

(accessed May 18, 2023).

[42]J. Maury, “Cobalt Strike: How It Became a Favorite Tool of Hackers,” eSecurityPlanet, Mar.

14, 2022. https://www.esecurityplanet.com/threats/how-cobalt-strike-became-a-favorite-tool-of-

hackers/ (accessed May 18, 2023).

[43]BishopFox, “BishopFox/Silver: Adversary Emulation Framework,” GitHub, May 18, 2023.

https://github.com/BishopFox/Silver (accessed May 18, 2023).

[44]G. SOC, “Silver C2 Leveraged by Many Threat Actors,” Cybereason.com, 2023.

https://www.cybereason.com/blog/Silver-c2-leveraged-by-many-threat-actors (accessed May 18,

2023).

[45]C. Nayak, “Brute Ratel C4,” Brute Ratel C4, 2023. https://bruteratel.com/ (accessed May 18,

2023).

[46]Ionut Arghire, “Hackers Using ‘Brute Ratel C4’ Red-Teaming Tool to Evade Detection,”

SecurityWeek, Jul. 07, 2022. https://www.securityweek.com/hackers-using-brute-ratel-c4-red-

teaming-tool-evade-detection/ (accessed May 18, 2023).

https://unit42.paloaltonetworks.com/cobalt-strike-malleable-c2-profile/
https://labs.withsecure.com/tools/c3
https://github.com/WithSecureLabs/C3
https://news.sophos.com/en-us/2023/05/18/the-phantom-menace-brute-ratel-remains-rare-and-targeted/
https://news.sophos.com/en-us/2023/05/18/the-phantom-menace-brute-ratel-remains-rare-and-targeted/
https://www.cobaltstrike.com/
https://thestack.technology/detecting-cobalt-strike/
https://thestack.technology/detecting-cobalt-strike/
https://www.proofpoint.com/us/blog/threat-insight/cobalt-strike-favorite-tool-apt-crimeware
https://www.esecurityplanet.com/threats/how-cobalt-strike-became-a-favorite-tool-of-hackers/
https://www.esecurityplanet.com/threats/how-cobalt-strike-became-a-favorite-tool-of-hackers/
https://github.com/BishopFox/sliver
https://www.cybereason.com/blog/sliver-c2-leveraged-by-many-threat-actors
https://bruteratel.com/
https://www.securityweek.com/hackers-using-brute-ratel-c4-red-teaming-tool-evade-detection/
https://www.securityweek.com/hackers-using-brute-ratel-c4-red-teaming-tool-evade-detection/

 [Bachelor Project]
 [Student: Oliver Albertsen]
 [Class: ITS22v | 7. Semester]
 [Guidance Counselor: Constantin Alexandru Gheorghiasa]
 [Deadline: 14-06-2023]

52

[47]M. Harbison and P. Renals, “When Pentest Tools Go Brutal: Red-Teaming Tool Being Abused

by Malicious Actors,” Unit 42, Jul. 05, 2022. https://unit42.paloaltonetworks.com/brute-ratel-c4-

tool/ (accessed May 18, 2023).

[48]A. Joshi, “Obfuscating Command and Control (C2) servers securely with Redirectors [Tutorial]

| Packt Hub,” Packt Hub, Jan. 16, 2019. https://hub.packtpub.com/obfuscating-command-and-

control-c2-servers-securely-with-redirectors-tutorial/ (accessed May 20, 2023).

[49]“socat(1): Multipurpose relay - Linux man page,” Die.net, 2022.

https://linux.die.net/man/1/socat (accessed May 20, 2023).

[50]D. Group, “Welcome! - The Apache HTTP Server Project,” Apache.org, 2020.

https://httpd.apache.org/ (accessed May 21, 2023).

[51]“Advanced Load Balancer, Web Server, & Reverse Proxy - NGINX,” NGINX, May 10, 2023.

https://www.nginx.com/ (accessed May 21, 2023).

[52]Caddy Web Server, “Reverse proxy quick-start - Caddy Documentation,” Caddyserver.com,

2023. https://caddyserver.com/docs/quick-starts/reverse-proxy (accessed May 21, 2023).

[53]A. Chester, “AWS Lambda Redirector,” XPN InfoSec Blog, 2020. https://blog.xpnsec.com/aws-

lambda-redirector/ (accessed May 21, 2023).

[54]C. Truncer, “Azure Functions - Functional Redirection,” FortyNorth Security Blog, Mar. 12,

2020. https://fortynorthsecurity.com/blog/azure-functions-functional-redirection/ (accessed May 21,

2023).

[55]A. Champion, “Using Cloudflare Workers as Redirectors,” ajpc500, Jan. 25, 2021.

https://ajpc500.github.io/c2/Using-CloudFlare-Workers-as-Redirectors/ (accessed May 21, 2023).

[56]J. Truong, “Domain Fronting 101: What is Domain Fronting and How Does it Work?,”

Hackernoon.com, Jul. 13, 2021. https://hackernoon.com/domain-fronting-101-what-is-domain-

fronting-and-how-does-it-work-es2v37pr (accessed May 21, 2023).

[57]Ansible, Red Hat, “Ansible is Simple IT Automation,” Ansible.com, 2023.

https://www.ansible.com/ (accessed May 22, 2023).

[58]“Securonix Threat Research Knowledge Sharing Series: Hiding the PowerShell Execution

Flow,” Securonix, Feb. 17, 2023. https://www.securonix.com/blog/hiding-the-powershell-

execution-flow/ (accessed May 29, 2023).

[59]“DigitalOcean | The Cloud for Builders,” Digitalocean.com, 2023.

https://www.digitalocean.com/ (accessed May 29, 2023).

[60]alvinashcraft, “Antimalware Scan Interface (AMSI) - Win32 apps,” Microsoft.com, Aug. 23,

https://unit42.paloaltonetworks.com/brute-ratel-c4-tool/
https://unit42.paloaltonetworks.com/brute-ratel-c4-tool/
https://hub.packtpub.com/obfuscating-command-and-control-c2-servers-securely-with-redirectors-tutorial/
https://hub.packtpub.com/obfuscating-command-and-control-c2-servers-securely-with-redirectors-tutorial/
https://linux.die.net/man/1/socat
https://httpd.apache.org/
https://www.nginx.com/
https://caddyserver.com/docs/quick-starts/reverse-proxy
https://blog.xpnsec.com/aws-lambda-redirector/
https://blog.xpnsec.com/aws-lambda-redirector/
https://fortynorthsecurity.com/blog/azure-functions-functional-redirection/
https://ajpc500.github.io/c2/Using-CloudFlare-Workers-as-Redirectors/
https://hackernoon.com/domain-fronting-101-what-is-domain-fronting-and-how-does-it-work-es2v37pr
https://hackernoon.com/domain-fronting-101-what-is-domain-fronting-and-how-does-it-work-es2v37pr
https://www.ansible.com/
https://www.securonix.com/blog/hiding-the-powershell-execution-flow/
https://www.securonix.com/blog/hiding-the-powershell-execution-flow/
https://www.digitalocean.com/

 [Bachelor Project]
 [Student: Oliver Albertsen]
 [Class: ITS22v | 7. Semester]
 [Guidance Counselor: Constantin Alexandru Gheorghiasa]
 [Deadline: 14-06-2023]

53

2019. https://learn.microsoft.com/en-us/windows/win32/amsi/antimalware-scan-interface-portal

(accessed Jun. 05, 2023).

[61]“[MS-DTYP]: DWORD,” Microsoft.com, Apr. 04, 2023. https://learn.microsoft.com/en-

us/openspecs/windows_protocols/ms-dtyp/262627d8-3418-4627-9218-4ffe110850b2 (accessed Jun.

06, 2023).

[62]stevewhims, “Windows Management Instrumentation - Win32 apps,” Microsoft.com, Mar. 08,

2023. https://learn.microsoft.com/en-us/windows/win32/wmisdk/wmi-start-page (accessed Jun. 06,

2023).

[63]“Windows Security Center: Fooling WMI Consumers - OPSWAT,” OPSWAT, Mar. 2013.

https://www.opswat.com/blog/windows-security-center-fooling-wmi-consumers (accessed Jun. 06,

2023).

[64]“[MS-ERREF]: HRESULT Values,” Microsoft.com, Nov. 16, 2021.

https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-erref/705fb797-2175-4a90-

b5a3-3918024b10b8 (accessed Jun. 06, 2023).

[65]thehackernews, “Threat Actors Turn to Silver as Open Source Alternative to Popular C2

Frameworks,” The Hacker News, Jan. 23, 2023. https://thehackernews.com/2023/01/threat-actors-

turn-to-Silver-as-open.html (accessed May 15, 2023).

[66]“Threat Actors Adopt Silver To Popular C2 Frameworks,” Information Security Buzz, Jan. 24,

2023. https://informationsecuritybuzz.com/threat-actors-adopt-silver-popular-c2-frameworks/

(accessed Jun. 08, 2023).

[67]byt3bl33d3r, “OffensiveNim/amsi_providerpatch_bin.nim at master ·

byt3bl33d3r/OffensiveNim,” GitHub, 2020.

https://github.com/byt3bl33d3r/OffensiveNim/blob/master/src/amsi_providerpatch_bin.nim

(accessed Jun. 09, 2023).

[68]A. Zola, “polling (computing),” WhatIs.com, 2023.

https://www.techtarget.com/whatis/definition/polling (accessed Jun. 11, 2023).

Appendix
The Appendix can be found in the attached folder structure. The code and configurations files can be found

there.

https://learn.microsoft.com/en-us/windows/win32/amsi/antimalware-scan-interface-portal
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-dtyp/262627d8-3418-4627-9218-4ffe110850b2
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-dtyp/262627d8-3418-4627-9218-4ffe110850b2
https://learn.microsoft.com/en-us/windows/win32/wmisdk/wmi-start-page
https://www.opswat.com/blog/windows-security-center-fooling-wmi-consumers
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-erref/705fb797-2175-4a90-b5a3-3918024b10b8
https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-erref/705fb797-2175-4a90-b5a3-3918024b10b8
https://thehackernews.com/2023/01/threat-actors-turn-to-sliver-as-open.html
https://thehackernews.com/2023/01/threat-actors-turn-to-sliver-as-open.html
https://informationsecuritybuzz.com/threat-actors-adopt-silver-popular-c2-frameworks/
https://github.com/byt3bl33d3r/OffensiveNim/blob/master/src/amsi_providerpatch_bin.nim
https://www.techtarget.com/whatis/definition/polling

